Representations of Boolean Functions

- Readings: 2.5, 2.5.2-2.10.4

- Boolean Function: $F = \overline{X} + YZ$

Truth Table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Why Boolean Algebra/Logic Minimization?

$$\bar{A}BC_{in} + A\bar{B}C_{in} + AB\bar{C}_{in} + ABC_{in} \quad vs. \quad AB + AC_{in} + BC_{in}$$

Logic Minimization: reduce complexity of the gate level implementation

- reduce number of literals (gate inputs)
- reduce number of gates
- reduce number of levels of gates

fewer inputs implies faster gates in some technologies
fan-ins (number of gate inputs) are limited in some technologies
fewer levels of gates implies reduced signal propagation delays
number of gates (or gate packages) influences manufacturing costs
<table>
<thead>
<tr>
<th>Basic Boolean Identities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X + 0 =) X (=) (X * 1 =)</td>
</tr>
<tr>
<td>(X + 1 =) X (=) (X * 0 =)</td>
</tr>
<tr>
<td>(X + X =) X (=) (X * X =)</td>
</tr>
<tr>
<td>(X + \overline{X} =) X (=) (X * \overline{X} =)</td>
</tr>
<tr>
<td>(\overline{X} =) (=) (=)</td>
</tr>
</tbody>
</table>
Basic Laws

Commutative Law:
\[X + Y = Y + X \quad \text{and} \quad XY = YX \]

Associative Law:
\[X+(Y+Z) = (X+Y)+Z \quad \text{and} \quad X(YZ)=(XY)Z \]

Distributive Law:
\[X(Y+Z) = XY + XZ \quad \text{and} \quad X+YZ = (X+Y)(X+Z) \]
Boolean Manipulations

- **Boolean Function:** \(F = XYZ + \overline{XY} + XYZ \overline{Z} \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Advanced Laws (Absorbtion)

- $X + XY =$
- $XY + X\bar{Y} =$
- $X + \bar{X}Y =$
- $X(X + Y) =$
- $(X + Y)(X + \bar{Y}) =$
- $X(\bar{X} + Y) =$
Boolean Manipulations (cont.)

- Boolean Function: \(F = \overline{XYZ} + XZ \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean Manipulations (cont.)

- Boolean Function: \(F = (X + \overline{Y} + X \overline{Y})(XY + \overline{XZ} + YZ) \)

Truth Table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Reduce Function:
DeMorgan’s Law

\[(X + Y) = X \cdot \overline{Y}\]

\[(X \cdot Y) = \overline{X} + \overline{Y}\]

DeMorgan's Law can be used to convert AND/OR expressions to OR/AND expressions

Example:

\[Z = \overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + A \overline{B} C + A B \overline{C}\]

\[\overline{Z} = (A + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C)\]
DeMorgan’s Law example

- If $F = (XY+Z)(\overline{Y}+\overline{XZ})(X\overline{Y}+\overline{Z})$,

\[\overline{F} = \]
Boolean Equations to Circuit Diagrams

- \(F = \overline{X}YZ + \overline{X}Y + XYZ \)

- \(F = XY + X(WZ + W\overline{Z}) \)
Circuit Timing Behavior

- Simple model: gates react after fixed delay

```
A | B | C | D | E | F
---|---|---|---|---|---
0  | 1 | 0 | 1 |   |   
1  | 1 |   |   |   |   
0  |   |   |   |   |   
```

Diagram:

```
A --+-- D --+-- E --> F
B    C
```
Hazards/Glitches

- Circuit can temporarily go to incorrect states

- Copilot Autopilot Request
- Pilot in Charge?
- Pilot Autopilot Request
- Autopilot Engaged

Diagram:

- CAR
- PIC
- PAR
- A
- B
- C
- AE
Field Programmable Gate Arrays (FPGAs)

Logic cells imbedded in a general routing structure

- Logic cells usually contain:
 - 6-input Boolean function calculator
 - Flip-flop (1-bit memory)

All features electronically (re)programmable
Using an FPGA

Verilog

FPGA CAD Tools

Bitstream

Simulation
Verilog

- Programming language for describing hardware
 - Simulate behavior before (wasting time) implementing
 - Find bugs early
 - Enable tools to automatically create implementation

- Similar to C/C++/Java
 - VHDL similar to ADA

- Modern version is “System Verilog”
 - Superset of previous; cleaner and more efficient
// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;

 assign F = ~((A & B) | (C & D));
endmodule

// end of Verilog code
// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 logic AB, CD, O;

 assign AB = A & B;
 assign CD = C & D;
 assign O = AB | CD;
 assign F = ~O;
endmodule
Verilog Gate Level

// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 logic AB, CD, O;

 and a1(AB, A, B);
 and a2(CD, C, D);
 or o1(O, AB, CD);
 not n1(F, O);
endmodule
module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 assign F = ~((A & B) | (C & D));
endmodule

module MUX2 (V, SEL, I, J);
 output logic V;
 input logic SEL, I, J;
 logic SELB, VB;
 not G1 (SELB, SEL);
 AOI G2 (.F(VB), .A(I), .B(SEL), .C(SELB), .D(J));
 not G3 (V, VB);
endmodule
module MUX2TEST; // No ports!
logic SEL, I, J, V;

initial // Stimulus
begin
 SEL = 1; I = 0; J = 0;
 #10 I = 1;
 #10 SEL = 0;
 #10 J = 1;
end

MUX2 M (.V, .SEL, .I, .J);

initial // Response
$monitor($time, , SEL, I, J, , V);
endmodule
NAND and NOR Gates

- **NAND Gate**: NOT(AND(A, B))

 ![NAND Gate Diagram]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X NAND Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **NOR Gate**: NOT(OR(A, B))

 ![NOR Gate Diagram]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X NOR Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Bubble Manipulation

- DeMorgan’s Law

- Simplification: \(\overline{AB} + \overline{CD} \)
NAND and NOR Gate Universality

- NAND and NOR gates are universal
 - can implement all the basic gates (AND, OR, NOT)

\[
\begin{array}{c|c}
\text{NAND} & \text{NOR} \\
\hline
\text{NOT} & \text{NOT} \\
\text{AND} & \text{AND} \\
\text{OR} & \text{OR} \\
\end{array}
\]
Converting Circuits to NAND/NOR Form

- Group gates into levels, insert double inversions on alternating levels

- Alternating AND/OR becomes all NAND or NOR
Some circuits may require internal inverters
XOR and XNOR Gates

- **XOR Gate**: $Z = 1$ if odd # of inputs are true

\[
\begin{array}{ccc}
X & \oplus & Y \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

- **XNOR Gate**: $Z = 1$ if even # of inputs are true

\[
\begin{array}{ccc}
X & \oplus & Y \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]