Combinational vs. Sequential Logic

- **Readings:** 3.1-3.2.6, 3.2.8

Network implemented from logic gates. The presence of feedback distinguishes between **sequential** and **combinational** networks.

Combinational logic
- no feedback among inputs and outputs
- outputs are a pure function of the inputs
- e.g., seat belt light:
 - (Dbelt, Pbelt, Passenger) mapped into (Light)

```
Logic Network
X1 → Z1
X2 → Z2
- → -
Xn → Zm
```

```
Logic Circuit
Dbelt → Seat Belt Light
Pbelt →
Passenger →
```
Hazards/Glitches

- Circuit can temporarily go to incorrect states

- Must filter out temporary states
Safe Sequential Circuits

- Clocked elements on feedback, perhaps outputs
 - Clock signal synchronizes operation
 - Clocked elements hide glitches/hazards
// Basic D flip-flop

module basic_D_FF (q, d, clk);
 output logic q;
 input logic d, clk;

 always_ff @(posedge clk) begin
 q <= d; // ALWAYS use <= to assign to clocked elements
 end
endmodule
D Flip Flop w/Synchronous Reset

// D flip-flop w/synchronous reset

module D_FF (q, d, reset, clk);
 output logic q;
 input logic d, reset, clk;

 always_ff @(posedge clk) begin
 if (reset)
 q <= 0; // On reset, set to 0
 else
 q <= d; // Otherwise out = d
 end

endmodule
Verilog Testbench

module stimulus;
 logic clk, reset, d, q;

 parameter ClockDelay = 100;

 D_FF dut (.q, .d, .reset, .clk); // Instantiate the D FF

 initial begin // Set up the clock
 clk <= 0;
 forever #(ClockDelay/2) clk <= ~clk;
 end

 initial begin // Set up the reset signal
 d <= 0; reset <= 1; @(posedge clk);
 reset <= 0; @(posedge clk);
 d <= 1; @(posedge clk);
 d <= 0; @(posedge clk);
 @(posedge clk);
 $stop(); // end the simulation
 end

endmodule