1.) Produce the minimum Sum of Products equation of the following K-Map. Each of the inputs in your product terms must be in alphabetical order (i.e. AB, not BA).

\[
F = \overline{B} \overline{C} \overline{D} \lor \overline{C} \overline{D} \lor \overline{A} \overline{D}
\]

- or -

\[
\overline{B} \overline{C} \overline{D} + \overline{C} \overline{D} \lor \overline{B} \overline{D}
\]
2.) In lecture we discussed how non-inverting gates (AND, OR, etc.) don’t exist, and we can only build circuits out of inverting gates (NAND, NOR, Invert). However, we never discussed how to build an XOR.

Build a 2-input XOR gate (A xor B) out of only inverting gates. Your circuit should be as efficient as possible.

\[A \oplus B = A \overline{B} + \overline{A} B \]
3.) For the following circuit, fill out the timing diagram for all gate outputs (C, D, F). The vertical lines in the timing diagram are 1ns apart, and each gate has a delay of 1ns. Also, two copies of the same diagram are given, in case you make a mistake. Make it clear which version you want graded.

Duplicate (if you make a mistake above):
4.) Draw the **state diagram** for the following circuit. Your state diagram should be *as simple as possible*.

An entrance gate at a secure facility requires a user to present a cardkey, and only allows one person to then go through the gate after each cardkey. At startup, the door should be locked.

Your circuit has a C (for CARDKEY) input, that will unlock a locked gate. It has an E (for ENTERED) input, that is true when someone has entered through the unlocked gate. And it has one output L (for LOCKED), that is true when the gate should be locked.

We employ only lazy employees, so C and E will never be true at the same time.

Your circuit output should change as soon as possible – i.e. react immediately to the current inputs.
5.) For the following state diagram, implement the circuit. You can use premade DFFs, and any basic gates. Your circuit should be as simple as possible.

The state encoding is Hop = 0, Skip = 1

<table>
<thead>
<tr>
<th>PS</th>
<th>IN</th>
<th>OUT</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hop</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Skip</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\text{out} = \overline{PS} \]

\[NS = PS + \overline{IN} \]

\[\overline{NS} = PS \]

\[\overline{IN} \]

\[\overline{DQ} \]

\[\overline{CLK} \]

\[\text{out} \]