Review Problem 18

- Solve the following K-Map.

\[F = \overline{AC} + \overline{BD} + \overline{BC} \]
\[= \overline{AC} + \overline{BC} \]
7-seg display in Verilog

- Verilog RTL: just describe what you want

```verilog
module seg7 (bcd, leds);
    input logic [3:0] bcd;
    output logic [6:0] leds;

always_comb begin
    case (bcd)
        // 3210       6543210
        4'b0000:    leds = 7'b0111111;
        4'b0001:    leds = 7'b0000110;
        4'b0010:    leds = 7'b1011011;
        4'b0011:    leds = 7'b1001111;
        4'b0100:    leds = 7'b1100110;
        4'b0101:    leds = 7'b1101101;
        4'b0110:    leds = 7'b1111101;
        4'b0111:    leds = 7'b0000111;
        4'b1000:    leds = 7'b1111111;
        4'b1001:    leds = 7'b1101111;
        default:    leds = 7'b1X;
    endcase
endmodule
```
Review: Circuit Implementation Techniques

- Truth Tables - Case-by-case circuit description
- Boolean Algebra - Math form for optimization
- K-Maps - Simplification technique
- Circuit Diagrams - TTL Implementations
- Verilog – Simulation & Mapping to FPGAs
Combinational Logic Design Process

1. Understand the Problem
 what is the circuit supposed to do?
 write down inputs (data, control) and outputs
 draw block diagram or other picture

2. Formulate the Problem in terms of a truth table or other suitable design representation
 truth table, Boolean Algebra, Verilog, etc.

3. Choose Implementation Target

4. Follow Implementation Procedure
 K-maps, Boolean algebra, Quartus synthesis
Process Line Control Example

Statement of the Problem
Rods of varying length (+/-10%) travel on conveyor belt
Mechanical arm pushes rods within spec (+/-5%) to one side
Second arm pushes rods too long to other side
Rods too short stay on belt

3 light barriers (light source + photocell) as sensors
Design combinational logic to activate the arms

Understanding the Problem
Inputs are three sensors, outputs are two arm control signals
Assume sensor reads "1" when tripped, "0" otherwise
Call sensors A, B, C
Draw a picture!
Where to place the light sensors A, B, and C to distinguish among the three cases?

Assume that A detects the leading edge of the rod on the conveyor
Process Line Control Example (cont.)

A to B distance placed apart at specification -5%

A to C distance placed apart at specification +5%

Accept

Long
Process Line Control Example (cont.)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Meaning</th>
<th>Accept</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No head/short entering</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>entering short/in spec</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>short entering</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>short forbidden</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>in spec</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>long</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Rule:
Rods must be spaced by $>5\%$.

Accept = ABC
Long = AC
Logical Function Unit

Create a unit that can compute the AND, OR, or XOR of two inputs A and B, based upon control lines C0 and C1.

\[R = C_1 \overline{A} \overline{B} + C_1 A \overline{B} + C_0 A B \]

Similar to the main computation unit in a Microprocessor
Logical Function Unit (cont.)

- Implementation: