Lesson 18

Properties of the DTFT We cover a few here and you can read about the rest in the textbook.



LINEARITY


\begin{displaymath}ax_1[n] + b x_2[n] \longleftrightarrow a X_1 (\Omega) + b X_2 (\Omega) \end{displaymath}

TIME SHIFT


MODULATION - Frequency Shift

CONVOLUTION IN TIME

As usual,

\begin{displaymath}x_1[n] \ast x_2[n] \longleftrightarrow X_1(\Omega) X_2 (\Omega) \end{displaymath}

Ex. Given $h[n]=a^n u[n], \vert a\vert<1$. Find its inverse system $h_i[n]$.

\fbox{Ex.} $x[n] = (.9)^{\vert n\vert}$. Find its DTFT.

MULTIPLICATION OF SIGNALS

\begin{displaymath}x_1[n]x_2[n] \longleftrightarrow {1 \over 2 \pi} X_1 (\Omega )
\bigotimes X_2 (\Omega) \end{displaymath}

where $\bigotimes$ denotes CIRCULAR CONVOLUTION:


\begin{displaymath}X_1 (\Omega) \bigotimes X_2 (\Omega) = \int_{2 \pi} X_1 (
\theta) X_2 (\Omega-\theta))d\theta \end{displaymath}


\begin{displaymath}y[n]=x_1[n] x_2[n] \longleftrightarrow {\rm Take\ its\ DTFT:}\end{displaymath}


\begin{displaymath}Y(\Omega) = \sum_n y[n] e^{-j \Omega n} = \sum_n x_1[n] x_2[n] e^{ -j
\Omega n} \end{displaymath}


\begin{displaymath}x_1 [n] = {1 \over 2 \pi} \int_{2 \pi} X_1(a) e^{jan} da \end{displaymath}


\begin{displaymath}x_2 [n] = {1 \over 2 \pi} \int_{2 \pi} X_2(b) e^{jbn} db \end{displaymath}


\begin{displaymath}Y(\Omega) = \sum_n \left[ {1 \over 2 \pi} \int_{da} X_1(a) e^...
...er 2\pi} \int_{db} X_2 (b) e^{jbn} db \right] e^{-j\Omega n}
\end{displaymath}


\begin{displaymath}=
\left( {1\over 2 \pi} \right)^2 \int_{da} \int_{db} X_1(a)
X_2(b) \sum_n e^{j (a+b)n} e^{-j \Omega n} da db \end{displaymath}

Now,

\begin{displaymath}\sum_n e^{j(a+b)n} e^{-j \Omega n} \end{displaymath}

is just the DTFT of

\begin{displaymath}e^{j(a+b)n} \end{displaymath}

that is,

\begin{displaymath}e^{j(a+b)n} \leftrightarrow
2 \pi \delta(\Omega -a -b ) \end{displaymath}

So,

\begin{eqnarray*}
Y(\Omega) &=& { 1\over 2\pi} \int_{da \over 2 \pi} \int_{db ...
... \over 2 \pi} X_1 (\Omega )
\bigotimes X_2 (\Omega)
\nonumber
\end{eqnarray*}