Goal: Fast overview of one of Intel’s main processors

Highlights:
- Superscalar
- Speculative Execution
- Register Renaming
- 14-deep pipeline

A bit of x86 instruction set
X86 Milestones – Evolution of the instruction set

Some relevant steps (not all):
1974: 8080 8-bit, 2MHz, 6k transistors
1978: 8086 16-bit, 5-10MHz, 29k transistors
1980: 8087 floating point coprocessor
1982: 80286 16-bit, 6-12.5MHz, 134k transistors, 24-bit address space
1985: 80386 32-bit, 16-33MHz, 256k transistors, 256B code cache
1989: 80486 32-bit, 25MHz, 1.2M transistors, 8KB L1, 5-stage pipe
1992: Pentium 32-bit, 60-66MHz, 3.3M transistors, 16KB L1, L2, branch predict, superscalar (CPI=0.5).
1995: Pentium Pro, 32-bit, 200MHz, 5.5M transistors, CPI=1/3, 12-stage pipeline, out-of-order execute, predicated instructions, 4-bit branch history.
1996: Pentium MMX, 150-233MHz, 4.5M transistors, SIMD (single instruction multiple data) instructions.
2000: Pentium 4, 1.3-3.0GHz, 42M transistors, 20-deep pipeline, symmetric multithreading
2006: Core 2 Duo, 64-bit, 1.0-2.3GHz, 291M transistors, 14-stage pipeline, multi-core
2008: Nehalem/i7, 1.73-3.46 GHz, 2.6B transistors, quad/octo-core, SMT, shared L3
2013: Haswell/i7, 1.9-4.6GHz, 1.4B transistors, 2-8 cores, on-die GPU, 2 branch units
2019: Ice Lake/Sunny Cove …

Backwards compatible
X86 Operands

16x64-bit registers plus special-purpose registers (Flag, segments, etc).

2-operand instructions:

<table>
<thead>
<tr>
<th>Source/Destination operand Type</th>
<th>Second source operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>Register</td>
</tr>
<tr>
<td>Register</td>
<td>Immediate</td>
</tr>
<tr>
<td>Register</td>
<td>Memory</td>
</tr>
<tr>
<td>Memory</td>
<td>Register</td>
</tr>
<tr>
<td>Memory</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

Multiple data memory addressing modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register Indirect</td>
<td>Mem[Reg[id]]</td>
</tr>
<tr>
<td>Base + 8/32/64-bit displace</td>
<td>Mem[Reg[id]+displace]</td>
</tr>
<tr>
<td>Base + scaled index</td>
<td>Mem[Reg[id]+Reg[id2]*2^{scale}, scale=0..3]</td>
</tr>
<tr>
<td>Base + scaled + 8/32/64 displace</td>
<td>Mem[Reg[id]+Reg[id2]*2^{scale}+displace]</td>
</tr>
</tbody>
</table>
Instructions

Data movement: Move, push, pop
Arithmetic & logic: test, integer, decimal math, etc.
Control Flow: conditional & unconditional jumps, calls, returns
String instructions: string move, compare (legacy from 8080, not much used)

Streaming SIMD (MMX, SSE)
- Single instruction, multiple data (i.e. 4x8-bit adds simultaneously)
- Intended for multi-media
Instruction Encoding

Range from 1-byte to 17-byte!

 Opcode says bitwidth of 8-bit/32-bit…
 May have extra byte to indicate addressing mode
 Extra byte for scaled index mode.

Stack Operation (PUSH) Conditional Branch (JE) LDUR/STUR (MOV)

<table>
<thead>
<tr>
<th>5</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>Reg</td>
<td>JE</td>
<td>Cond</td>
<td>Displace</td>
</tr>
</tbody>
</table>

Branch w/link (CALL) ADDI (ADD)

<table>
<thead>
<tr>
<th>8</th>
<th>32</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL</td>
<td>Offset</td>
<td>ADD</td>
<td>Reg</td>
<td>w</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

Set flag with AND (TEST)

<table>
<thead>
<tr>
<th>7</th>
<th>1</th>
<th>8</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>w</td>
<td>AddrMode</td>
<td>Immediate</td>
</tr>
</tbody>
</table>
Instruction Decoding

X86 instructions are essentially pseudo-instructions, converted to multiple RISC-like micro-ops

CPU decodes X86 into micro-ops at runtime

Picture from David Schor, wikichip.org
Instruction Scheduling

Picture from David Schor, wikichip.org
ALUs

Picture from David Schor, wikichip.org
Parallelism

CPU is ~10-way superscalar, ~14 pipeline stages (P4 had 20!)
 Superscalar picks from 352-Instruction window.
 Register renaming to 180 registers.
Each chip has 2-4 cores
Symmetric Multithreading (2-way per core)
On-chip GPU
Cache Organization

All 64 byte blocks, write-back.

(Per core) Split L1 Caches
32KB, 8-way Set Associative Instruction Cache
Can fetch 16B/cycle.
48KB, 12-way Set Associative Data Cache
5-cycle latency. 128B/cycle loads & stores.

(Per core) L2 Unified Cache
512KB, 8-way Set Associative
non-inclusive
13-cycle latency

(Per-chip) L3 Unified Cache
up to 8MB, 16-way Set Associative
inclusive
~36-cycle latency
Pipeline

14-19 stages
Layout

Core: CPU
RING: interconnect
GT: GPU
Type C: I/O port
Display: Display driver
IPU: Image Processing Unit
OPIO: on-package I/O
DDR: Memory interface
Intel Ice Lake Die