Lab Objectives:
The objectives of this project are to learn the 18F25K22 PIC microprocessor, to utilize our knowledge of the SRAM, to learn simple networking and protocols, and to learn and practice the full product development life cycle while documenting, designing, building, and testing a highly reliable (fail operational), distributed, remotely controlled network based device.

Background Information:
You have just returned from a meeting at Johns Hopkins University with a number of the top researchers in the field of remotely controlled surgery. Anxious to explore some of the ideas and problems discussed, you decide to design and implement a working prototype to study the feasibility of and potential problems affecting such a system.

Supporting Material:
The EE 474 text contains several chapters that are directly relevant to the tasks presented in this lab. You are strongly encouraged to look through those. These include: Chapters 5, 8, 9, 10, 15, 16, and 17. Chapter 12 (corresponding to the text’s Chapter 9) is also on line under documentation and labeled Design Cycle. You will find this particularly relevant during the specification and early design phases.

You can also find a discussion in the class lecture notes, also posted on line.

Cautions and Warnings:
When you are working with the EIA-232 (RS-232) portion of the design, make certain to check all of your connections, signals and voltage levels prior to connecting to the computers. We do not want to risk damaging the equipment.

Contrary to beliefs in some circles, a 4-bit, ripple, binary up counter cannot be converted into the equivalent down counter merely by interchanging power and ground nor by mounting the chips on the opposite side of the PCB. Rather, such an attempt is more likely to release the smoke demon – not a pleasant prospect to say the least.

Observations and Curious Questions:
If the water leaving a flushed toilet circulates one direction north of the equator and the opposite direction to the south, what direction does it go at the equator? At what point does it change directions? What if half of the toilet is to the north and the other half to the south…then what happens? Does the same thing happen to a ballet dancer? How about a Tasmanian devil?
If you hide in the closet with your cell phone, how does a telephone call know exactly where you are when no one else does? If it can’t find you is it a smart or not smart phone?

Project:
General Description
The prototype system will implement a portion of a highly reliable remotely controlled system intended for use in critical surgery operations. Ultimately, the remote portion of the system will be triply redundant and include a separate monitoring channel. For the feasibility prototype and current studies, the system will comprise a local node, a remote node, and single instance of the control channel on the remote node. The communication link between the local and remote nodes will bundle the outgoing control channel with the return monitor channel from the remote node.

The local node will provide the interface through which the user will remotely control the operation of the surgical device. Together, the local and remote nodes will form a distributed closed loop control system. Commands will be accepted from the user, interpreted and formatted, then sent over the network to the remote node. On the remote node, the control channel will accept, parse, interpret, and execute the commands. The monitoring channel will track the operation of the end effector control system, return the state of the end effector to the local node as an error signal, and take the appropriate action(s) under out of tolerance or failure conditions.

The project is to be developed in two phases. The first phase deliverables will comprise the high-speed control (outgoing) channel, implemented as a portion of a local area I2C network, and a local EIA-232 terminal user interface that will provide a text based display of commands, responses, and system state. The second phase will support the remote monitor channel (return channel) and the data for the local control, annunciations, warnings, and alarms.

The full project report is to be delivered at the end of the completed project. There will be weekly status reports, two formal design reviews, and two project demos as noted in the deliverables section.

High reliability is the key objective.

General Requirements
You are building a feasibility prototype for a portion of a highly reliable, remotely controlled system intended for use in critical surgical operations. The prototype for the remote portion of the system will implement a single control channel and a return monitor channel.

Local Node
The local node will provide the user interface, the control algorithm, warning and alarm driver, and the local portion of the LAN.

From the local node, the user will be able issue commands to start and stop the motor controlling the surgical tools on the remote node. In addition, the user will be able to specify a set point and to increment or decrement the speed of the motor in steps of ±0.5%. Such action will set the reference motor stimulus value on the remote node.
Based upon the data returned via the remote monitor channel, the control algorithm will be able to command an increase or decrease in the speed of the motor around the set point in steps of ±0.5%. The error signal will be algebraically added to the reference motor stimulus value to maintain the commanded speed.

The local node will support an EIA-232 terminal interface to enable the display of the set point, increment, and decrement values as well as any error or alarm information from the remote node.

Remote Node

The remote node will comprise the control and monitoring channels and support for the remote portion of the LAN.

Control Channel

The control channel will accept set point, increment, and decrement commands from the local node. The control channel will use the set point information to control the pulse width of a PWM output signal that is used to drive a small electric motor. Increment and decrement commands will increase or decrease the pulse width, and thereby the speed of the motor, accordingly.

The PWM output will have a frequency of 25.00 KHz. The control voltage for the motor ranges between 0.0 V DC, corresponding to motor OFF, and 5.0 V DC, corresponding to motor FULL ON.

Monitor Channel

The monitor channel will measure the average voltage applied to the motor and return this value to the local node. In addition, based upon the control commands, it will compute the expected average voltage that should be applied to the motor, measure the actual voltage, and compute any error. If there is an error, the appropriate actions should be taken.

Errors are organized into three classes,

- ±5.0% - Level 0 - severe
- ±2.0% - Level 1 - moderate
- ±1.0% - Level 2 – of concern

Local Area Network

The LAN will be implemented as an I²C link and will provide the communication path between the local and remote nodes. The link will comprise a bidirectional connection between the local node and the control and monitor channels on the remote side.

Communication will be buffered at both the local and remote nodes.

The LAN between the local and remote nodes can be implemented using the built-in I²C interface on the PIC on both sides of the link.
Deliverables

The following are the deliverables for the project,

All Phases

Weekly status report by each team member emailed to the instructor and TA by Friday afternoon describing his or her efforts (the team member’s, not the instructor’s or the TA’s) and contributions on the project for the previous week. This is to be an individual, not team, report.

High Level Phase 1 Deliverables

- The required documentation,
- A working prototype of the local node,
- A working prototype of the control portion of the remote node,
- A working prototype of the control channel link on the network.

High Level Phase 2 Deliverables

- The full documentation,
- A working prototype of the local node,
- A working prototype of the control and monitor portions of the remote node,
- A working prototype of the control and monitor channel links on the network.

Phase 1

Week One – Preliminary Development – Deliverables – See online schedule

For a discussion of the use case diagrams, requirements, and design specifications, see the EE 474 or on-line text for examples, the expected format, and general content.

1. A hard copy of the following are due on the date listed on the class web page, prior to the first design review:

 For both the requirements and design specifications, see the EE 474 or on-line text for examples, the expected format, and general content.

 a. UML Use Case diagrams for the local node and the control portion of the remote node. Each use case must include the graphic and text portion. The text portion must include: a description of the use case and the identification of any exceptions.

 b. A Requirements specification for the local node and the control portion of the remote node.

 c. A Design specification for the local node and the control portion of the remote node that formalizes and provides firm quantified specifications for each of the identified requirements.

 d. A preliminary functional decomposition for the software on the local node and the control channel and comms link on the remote node.
e. A detailed block diagram for the local node and the control node portion of the remote node. See the file blockDiagramBasics.pdf on the class web page under **Class Documentation**.

f. A Failure Modes Analysis based upon the current block diagram.

g. A preliminary Bill of Materials.

h. A full schedule, presented as a Gant Chart, specifying the major tasks and milestones on the project and the primary person responsible for each task. These are due on the date listed on the class web page.

Week Two – Detailed Development – Deliverables – See online schedule
For a discussion of data and control flow, activity, and sequence diagrams, see the EE 474 or on-line text for examples, the expected format, and general content.

2. Project design review on the date listed on the class web page. Documentation for the design review should include week 1 deliverables as well as an electronic version of the following:
 ✓ Updated UML diagrams.
 ✓ An updated functional decomposition software on the local node and the control channel and comms link on the remote node.
 ✓ A preliminary Failure Modes Analysis based upon the updated block diagrams. The exceptions identified in the text portion of the Use Case analysis can be a good place to begin thinking about this.
 ✓ Data and control flow, activity, and sequence diagrams for the data collection and failure management subsystems.
 ✓ An annotated list of the commands and responses for the bidirectional exchange between the rover and the surface ship communication subsystem.
 ✓ An updated schedule as a Gant chart reflecting the current state of the project.

3. Project design review on the date listed on the class web page. Documentation for the design review should include:
 b. An updated schedule reflecting the current state of the project.
 c. An updated block diagram for the local node and the control node portion of the remote node.
 d. A project design review. Be prepared to justify your design decisions and design.
4. Project demo on the date listed on the class web page. The first phase demo shall show the local node functionality and transmission to and control at the remote node.
 a. An updated Requirements Specification, a Design Specification, Test Plan, and bill of materials reflecting the specifications for the monitor portion of the local and remote nodes.
 b. A set of test cases based upon the Test Plan for the current system.
 c. An updated schedule reflecting the current state of the project.
 d. An updated detailed block diagram for the local node and the control and monitor portions of the remote node.
 e. An updated Failure Modes Analysis based upon the full block diagram.
 f. A demo of the Phase 1 deliverables.

Phase 2

5. Project design review. Note that this occurs at the time of the Phase 1 demo. Documentation for the design review should include:
 - Block diagram for the bidirectional local to remote nodes portion of the system.
 - Protocol for the exchange between the local and remote nodes over the LAN.
 - Updated cost estimate and schedule,
 - Pseudo code for the return channel algorithm,
 - Preliminary timing diagrams.

6. Project demo of the complete working system. The demo is on the date listed on the class web page.

7. One project report. The report is due on the date listed on the class web page.

8. Additional features will be individually evaluated but they only apply if the main portion of the system is fully functional.
Project Report:

Write up your project report following the guideline on the EE 475 web page. Your final deliverables in your report for this project include,

1. Completed and updated Requirements and Design Specifications.
2. Final detailed system block diagram.
3. System timing diagram as appropriate.
4. System state diagram(s).
5. Logic equations or Verilog listings.
6. Final Failure Modes Analysis.
7. Failure management scheme.
8. Software for your system.
9. Schematic / logic diagrams for your remote surgery system.
10. Logic analyzer printouts and accompanying timing analysis as appropriate.
11. Test Plan.
12. Analysis and discussion of problems encountered in the design and implementation of the system as appropriate.
13. Short technical description of the system.
14. Final factory cost (BOM) for your system.
15. Final updated schedule.
16. Demo to your TA or instructor of a working system.
Appendix A Block Diagrams

The following block diagram gives a high level architecture for system that must perform the following functions:

- Capture and store image data
- Sample several analog signals, convert these to digital form then store the results
- Receive GPS information
- Send and receive serial information and data
- Control
 Control includes, system control, the need to manage and coordinate operation of composite elements, control motor speed based upon pressure measurements, manage heating, ventilation, and air conditioning using measured temperature data.
- Display information
 Such information includes normal information as well as extraordinary condition annunciation.

All components are interconnected via a system bus. The system bus components are not elaborated at the current stage of design. Elaboration can occur, if necessary, as the design is refined. Specifically observe that data and control flows are not distinguished. Observe also, that for the most part, inputs appear on left and outputs appear on right. The exception is the serial communications module which supports bidirectional communication and is thus, grouped with the inputs subset.

For clarity, we have a visual grouping of the following:

- The serial communication and GPS blocks.
- The analog measurement and image capture. They perform similar types of function and are thus grouped together.
Appendix B: Failure Modes and Effects Analysis

As an engineer, designing something, building it, and getting it to work properly and reliably is an exciting part of the job. Getting that first LED to turn on is often a major milestone and accomplishment in the process and almost worth getting a beer to celebrate. However, getting the design to work is not the end of the job.

Examining our design and asking how, where, and when it might fail is equally, if not more, important. In this project, we want to take a first look at potential failure modes and failure analysis. Such a practice, known as Failure Modes and Effects Analysis (FMEA) is commonly used in many industries where product safety and reliability are critical.

As our first step, we will take a very high-level view. For this initial step, we will limit our investigation to the various signals in our system and to three kinds of failure modes: SA0, SA1, and Bridge. These are a signal Stuck At 0 or Stuck At 1 or two signals incorrectly/unintentionally connected together called a bridge.

We look at each input, output, and internal signal in the system and ask: What are the effects if any of the three failure modes occurs on or to that signal and what are the consequences and severity of such a failure on the operation of the system? In a more complete analysis, we determine the probability or each fault occurring as we assess the risk if such a fault should occur.

For this project, we will examine each input, output, and internal signal for each subsystem and analyze the effects on that subsystem of a SA0 or SA1 fault on that signal, on the operation of the subsystem, and the entire system. We will defer bridge faults.

A typical set of ground rules for conducting such an analysis are:

1. Only one failure mode exists at a time.
2. All inputs (including software commands) to the system or subsystem being analyzed are present and at nominal values.
3. Sufficient power is available to the system.
Appendix C

Background Information:

Microcomputer communications is a rapidly growing field with an ever-increasing number of applications, ranging from local PC networks to large-scale communication systems. Central to any communications between electronic devices is a protocol for transmitting and receiving information. Within a computer, data is usually transferred in parallel form, such as on a microprocessor or an I/O bus. While parallel communication is far more efficient than serial at moving large numbers of bits, it is not always as practical. Thus, most communications a computer and other electronic devices that are not in the immediate vicinity is usually done using a serial scheme – Ethernet, USB, WiFi, Bluetooth, Firewire, EIA-232, I²C, SPI etc..

Of course, with two different formats for exchanging data there will be many occasions in which data have to be converted from one form to the other. There are a number of ICs available to accomplish this task.

Another important element of communication is ensuring that the data given to the user following reception contains no errors arising from such a transmission. Note that we do not guarantee there are no transmission errors, these happen. Rather, at the end of the day, we guarantee the data to be correct. There are a variety of schemes by which this is accomplished: all begin with recognizing that a transmission error has occurred. We’ll examine one, simple parity checking.

When debugging digital circuits, it is helpful to understand what each part of the circuit is doing and exactly when certain events are occurring. The amount of information can be huge, and often we would like to filter out as much of the unnecessary data as possible. Also, sometimes we are interested in timing measurements, other times we are more concerned with comparing the different states of various parts of the circuit. Use the logic analyzer to do this.

Serial Communication: Asynchronous vs. Synchronous

Asynchronous communication suggests that there are irregular intervals between the sending of data. Suppose that a serial communication line is set up to transmit ASCII characters as typed by a person at a keyboard. The spacing between the transmission of each character will vary widely, and there may be long periods when no characters are typed (coffee breaks, tea breaks, bio break, naps, etc.). In this situation, the receiving device needs to be told when a character is being sent to prepare it to receive that character and sort out which part is data, which part is the error-checking field, and so on.

This is accomplished by a procedure known as framing, in which a start bit is placed before the first data character, and a stop bit is placed at the end of the transmission of one character. The start bit enables the receiving device to temporarily synchronize with the transmitting device, while the stop bits allow the receiving device time to get ready for the next frame (see Intel supplement).

In contrast, when blocks (usually large ones) of regularly spaced data are transferred over a serial line, the transmitter and receiver can be synchronized, transferring characters at a much higher rate. In this format, known as synchronous transmission, start and stop bits are no longer needed, since the receiving device knows exactly where each character begins and ends.
Although synchronous transfer requires less overhead and therefore is much more efficient, its uses are more limited than asynchronous data transfer, and thus the latter is more widely used.

Network Overview

Our serial network is designed to exchange information between an operator at a local site and a surgical tool at a remote site. The network implements half-duplex communication, that is, data may be sent in only one direction at a time.

Traditionally, networks comprise a number of layers - each viewed as a virtual machine upon which the layer above operates. OSI uses 7, TCP/IP uses 5, USB uses 3. For our design, we will use 4: the **physical layer**, the **data link layer**, the **protocol layer**, and the **application layer**. These are described in the following.

The Physical Layer

The physical layer for our network will comprise 5 lines and their associated signals: transmitted data, received data, signal ground, and two control lines. Signaling levels will be those specified for EIA-232 as described above.

The Data Link Layer

The data link layer will move characters, expressed in the EIA-232 format, from the host to a remote site and from a remote site to the host.

The Protocol Layer

The Protocol layer will move commands and data from the host to a node at the remote site and move data from a node at the remote site to the host. Each node within such system is identified by a 3 bit address.

The Application Layer

The Application layer will provide the link between an application on the host and one on a remote node. We wish to be able to communicate with and execute applications on up to 7 systems on our network as shown in the example block diagram below. For this project it is sufficient to demonstrate one.

![Network Diagram](image-url)
I\(^2\)C Interface and Protocol

The I\(^2\)C interface and protocol are described and discussed in the PIC 18F25K22 data sheet. See Section 15.0, Master Synchronous Serial port (MSSP1 and MSSP2) module. Additional information can be found online, on the class web page under documentation/i\(^2\)c, and in the EE474 text.

EIA-232 Protocol

When two devices are relaying information back and forth, it is common to designate one of the devices as Data Terminal Equipment (DTE) and the other as Data Communication Equipment (DCE). The EIA-232 protocol is a standard that specifies the circuits between the DTE and DCE devices, and the lines that connect them, such as which line data is transmitted over, which line controls handshaking, and so forth. The figure below shows the pin numbers on a DB-9 and a DB-25 connector and the EIA-232 inputs/outputs to which they correspond.

![EIA-232 Pin Diagram](image-url)
For this project, a PC will function as the DTE, and our remote system as the DCE. We will be working with only the following EIA-232 lines:

- TXD—data transmission line from DTE to DCE
- RXD—data transmission line from DTE to DCE
- SG—signal ground

Special voltage levels that correspond to digital high and low characterize EIA-232 data. A logical ‘1’ in the EIA-232 specification is known as a *mark*, and corresponds to a voltage between -3 and -15 volts, whereas a logical ‘0’, or *space*, corresponds to a voltage between +3 and +15 volts. These special voltage levels are used to preserve the signal as it travels through connecting cables.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Interchange Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Binary State</td>
<td>1</td>
</tr>
<tr>
<td>Signal Condition</td>
<td>Marking</td>
</tr>
<tr>
<td>Function</td>
<td>OFF</td>
</tr>
</tbody>
</table>

You will need to add a buffer to the input of your device to convert from EIA-232 to TTL levels and vice versa.

Finally, note that the data link remains in the marking state (< -3 V) until the start bit, which is a space (> +3 V), is sent.

Framing

In serial communications, data is grouped into frames, which have already been partially described above. The start of a frame is signaled by the start bit, the end by one or more stop bits. Data and error checking (parity bit) codes are contained within each frame.

In order to perform serial to parallel conversion, our circuit must know what part of the frame is being looked at any one time. For example, we don’t want to be looking for a start bit in the middle of the data, nor do we want to be checking parity when the start bit is being received. One way to keep track of the serial input is to use a counting mechanism activated by the start bit of each frame.