FPGAs & Multi-FPGA Systems

Fit logic into a prefabricated system
Fixed inter-chip routing
Fixed on-chip logic & routing

Diagram of FPGA connections and routing:

- Partitioning
- Global Routing
- Technology Map.
- Placement
- Routing

...0100011101010

FPGA
FPGA Abstract Model

Logic cells imbedded in a general routing structure

Logic cells usually contain:

- 6-input Boolean function calculator
- Flip-flop (1-bit memory)

All features electronically (re)programmable
The k-Input LUT (e.g. k=4)

LUT-mask

\[a'b'c'd' + abcd + abc'd' = 1000 \ 0000 \ 0000 \ 1001 = 0x8009 \]
Adaptive Logic Module
Stratix V ALM Modes
Hierarchy: LAB / Cluster

H channel

V channel

LAB

LE

LAB lines
Altera Stratix V Device Floorplan

- Logic Blocks
- Multipliers & DSP
- Embedded Memories
- Clocking Logic
- I/O Protocols
Memory in Stratix Devices

MLABs
Change LABs into dual port memories
- 10x32addr by 2bit
- 10x64addr by 1bit
- FIFO Buffers
- Shift Registers
- Delay Lines
- Small ROMs

M20K Blocks
20Kbit on-chip blocks
dual port w/parity
- 16Kaddr by 1bit
- 8Kaddr by 2bit
- 512addr by 32bit
- Large on-chip storage
- Intermediate results
- Caching & data reuse

External Memory
DRAM, SRAM, & FLASH interfaces
- Multiple Gbytes
- Huge Datasets
- Longer-term storage

More Bits for Larger Memory Buffering
More Data Ports for Greater Memory Bandwidth
DSP Blocks (18-bit mode)
DSP Blocks (High-precision mode)
Putting it all Together
Stratix V Statistics (5SGSD5H2F35I3LN)

Logic
- ALMs (4xReg, 4x4LUT, ...): 172K
- DFFs: 690K
- 4-LUTs: 690K
- Hard Multipliers: 3,180 (18x18), 1,590 (27x27)

Memory
- 64x10b MLABs (uses ALMs): 4.3K (344KBytes)
- M20K blocks: 2,014 (4.9MBytes)

I/O, Clocks
- PCIe hard IP blocks: 1
- DDR3 Interfaces: 4
- 14.1Gbps transceivers: 24
- Clock Generators (PLLs): 24
FPGA Roles

Digital logic implementation & prototyping
Multi-mode systems
 Change functionality for different applications
Logic emulation
Stream-based computing

Processor acceleration
Partitioning

For Multi-FPGA System:
- Break logic into individual FPGAs
- Respect inter-FPGA communications
- Similar to placement

Techniques
- Multi-level partitioning (xbars)
- Simulated Annealing
Virtual Wires

Multi-FPGA systems typically pin-limited, not logic limited

FPGA: up to 1 Million logic gates, 512 I/Os.

Partitioned circuit components might be:
10x (1 Million gates, 5,000 I/Os)
100x (100,000 gates, 500 I/Os)

Solution:

20x (1/2 Million gates, 2,500 I/Os + time division multiplexing on I/Os)
Global (Inter-FPGA) Routing

Route from source to destination FPGA using fixed resources
Similar to Aphyds Global Routing, but with fixed capacities
Maze, Steiner, etc. all can be applied
Must deal with potentially non-geometric distances
Technology Mapping

Take circuit and map it into the basic elements of the FPGA 5-LUTs

Must consider multiple factors
 - logic decomposition
 - logic replication
 - reconvergent fanout
Placement

Assign logic blocks to specific chip locations
Virtually identical to Aphyds Placement
Seek to minimize routing distance, congestion
FPGA Routing

Must pick the individual resources to use to carry a signal
 fixed capacity
 potentially non-geometric distances
 balance demands of multiple routes

Pathfinder (McMurchie, Ebeling)
 Convert routing architecture to graph
 Ignore congestion – change penalties and iterate
 Use maze + A* routing
 Integrate performance and congestion avoidance into one algorithm
Pathfinder

Represent all interconnection resources as a directed graph
Pin permutations on LUT inputs also captured

Routing sketch:
Each iteration rip-up and reroute all signals independently.
Resources currently used by another net cost more
Between iterations increase cost of resources that are shared

\[F(A, B, C) \]

\[\rightarrow \text{Over time, signals "bid" on preferred route, negotiating a compromise} \]
FPGAs & Multi-FPGA Systems

Fit logic into a prefabricated system
 Fixed inter-chip routing
 Fixed on-chip logic & routing

Partitioning
Global Routing
Technology Map.
Placement
Routing

...0100011101010 → FPGA